ANALYSIS AND DESIGN OF CONCRETE BUILDING

THE WESTINGHOUSE ELECTRIC COMPANY CORPORATE HEADQUARTERS

CRANBERRY, PA

JESSICA L. LAURITO STRUCTURAL OPTION

AE SENIOR THESIS APRIL 14, 2009 PENN STATE UNIVERSITY

TOPIC OUTLINE

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

THE WESTINGHOUSE ELECTRIC COMPANY CORPORATE HEADQUARTERS

- Building Background Information
 - Existing Building Conditions
 - Project Goals
 - Design Process
 - Design Implications and RAM Model
 - Lateral Loads and Considerations
 - Schedule Comparison
 - Cost Analysis Study
- Sustainable Architecture Study
 - Recommendations
 - Acknowledgements
 - Questions

BACKGROUND INFORMATION

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

THE WESTINGHOUSE ELECTRIC COMPANY CORPORATE HEADQUARTERS

• Function: Corporate Headquarters and Office Space

■ Project Size: 434,800 sq. ft.

Stories: 5 above grade, 1 below grade

■ Total Cost: \$55,878,000

■ Construction: February 2008 – May 2009

Building Location: Cranberry, Pennsylvania

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

EXISTING STRUCTURAL STEEL FRAMING

- Steel framing
- Composite metal deck LWC topping
- ■Typical floor height 14'
- •Foundation: Spread footings and caissons
- Moment connections at every column
- ■Typical bay size is 45'x24'

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

- ■434,800 SF BUILDING ONE
- Buildings Two And Three On Each Side To Start The Campus
- THE BUILDING IS EQUIPPED WITH AMENITIES SUCH AS:
 - ■CAFETERIA
 - ■G Y M
 - ■LOCKER ROOMS
 - •Offices
 - ■EXECUTIVE CONFERENCE ROOMS
- •LEED CERTIFIED BUILDING GOAL

Background Information

Existing Conditions

■83 ACRE SITE IN BUTLER COUNTY

■EASILY ACCESSIBLE FROM I-79, I-76, AND PA-228

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Site Map From www.google.com

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

PROBLEM STATEMENT

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Structural Depth

- The building has been shown to be effective with the existing system. However, the wind moment connections at every column could be more efficient.
- The typical bay size fits into the L₁/L₂>2 requirement, making it ideal for a one-way slab.

Construction Management Breadth

Before a final decision can be made on the effectiveness of the new building structure, the systems must be compared for cost and construction time.

Sustainable Architecture Breadth

- As a corporate headquarters, the building should make a statement.
- LEED certification is a requirement to the owner.
- A campus of this magnitude needs to be integrated into the environment

PROJECT GOALS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Structural Depth Goals

- Redesign the structural system using reinforced cast-in-place concrete and a one-way slab with beams floor system
- Implement the code effectively and efficiently
- Design a practical building

Construction Management Breadth Study Goals

- Calculate a cost estimate for redesigned building
- Generate a schedule for redesigned building
- Effectively compare the new cost and schedule with Turner Construction Company's actual cost and schedule

Sustainable Architecture Breadth Study Goals

- Incorporate the building into the environment
- Successfully implement a green roof
 - ■Detail, specify plants and materials, size drainage system pipes
- ■Determine number of LEED points possible for new design

DESIGN PROCESS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Design Codes Used:

■IBC 2006

ACI 318-08

■ASCE 7-05

■AISC Steel Construction Manual 13th Ed.

Design Basis

- Dead load= weight of concrete + superimposed loads Live load= 70 PSF (50 Office and 20 Partition)
- Same building as the steel, only concrete
 - No beams, just girders and slab
- Additional load for green roof =100 PSF dead and patio live load= 100 PSF
- Hand design checked in RAM Structural System and rechecked with lateral by hand
- Foundations resized for new building

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Concrete Design Considerations

- ■One-way slab L₁/L₂>2
- Transverse reinforcement for shrinkage and temperature
- Moment transfer in concrete is different than in steel
- ■Foundation impact on spread footings and caissons
 - Resized for new dead load

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

- Determine superimposed loads from drawings and ASCE 7-05
- ■Perform a preliminary design of slabs, beams, and columns
- Determine location of CMRF's

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

- Determine superimposed loads from drawings and ASCE 7-05
- ■Perform a preliminary design of slabs, beams, and columns
- Determine location of CMRF's
- ■Create a RAM Structural System Model

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

- Determine superimposed loads from drawings and ASCE 7-05
- ■Perform a preliminary design of slabs, beams, and columns
- Determine location of CMRF's
- ■Create a RAM Structural System Model
- Compare the preliminary sizes to the RAM generated model sizes
- Hand calculation of lateral loads
- Update beam and column sizes for lateral loads in RAM model

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

- Determine superimposed loads from drawings and ASCE 7-05
- ■Perform a preliminary design of slabs, beams, and columns
- Determine location of CMRF's
- Create a RAM Structural System Model
- ■Compare the preliminary sizes to the RAM generated model sizes
- Hand calculation of lateral loads
- Update beam and column sizes for lateral loads in RAM model
- Spot check column sizes with PCA Column
- Spot check lateral beam by hand
- ■Update RAM model

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Design Assumptions

- The ideal condition for the gravity members was assumed to be a simply supported beam
- The lateral members were assumed to be the ideal fixed-fixed connection to the columns
- The column connection to the foundation was assumed to be pinned
- The seismic response coefficient was assumed to be R=3.0
- Model has ordinary moment frames in RAM Structural System
- Green roof and inclusive loads are present (separate analysis without performed for breadth)

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Design Process

Concrete Moment Resisting Frame Detail

Background Information

FOUNDATION IMPLICATIONS

Existing Conditions Old and New Foundation Sizes for spot checked columns

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

	Size	Column	Type of Foundation	Size (ft)	Height (in)	Capacity (k)	Required (k)	Required Size	Required Height (in)	New Size (ft)	New Capacity (k)	Final Height (in)	RAM Size (ft)	RAM Height (in)
ľ	28	0.7-C	spread footing	5	18	200	384.844	6.936	18.273	7	392	22	8	24
	24	1-B	spread footing	9.5	28	722	978.696	11.061	39.397	11.5	1058	44	11	36
	24	1-C	spread footing	12	36	1152	1471.816	13.564	49.499	14	1568	54	13	42
	24	1-D	spread footing	11	34	968	1606.032	14.169	51.518	14.5	1682	56	14	42
	28	2-D	spread footing	12	36	1152	2179.108	16.504	56.044	17	2312	60	16	48
	24	4-B	spread footing	10	32	800	1417.268	13.310	47.480	13.5	1458	52	13	42
	30	1-E	caisson #48	5.5	146	712.749	957.832		146	7.00	1084.30	150		
	28	6-B	spread footing	10	32	800	1454.464	13.484	42.858	13.5	1458	48	13	36
	24	7.9-C	spread footing	13	40	1352	1342.364	12.954	45.460	13	1352	50	12	36
	28	8-B	spread footing	11	34	968	922.328	10.737	33.426	11	968	38	11	30
	24	8-C	spread footing	13	40	1352	1330.536	12.896	45.460	13	1352	50	12	36
ı	48	13-A	spread footing	8	32	512	570.728	8.446	14.111	9	648	18	9	24
	24	14-A.4	spread footing	8	32	512	418.416	7.232	25.211	8	512	30	7	18
	24	15-B.7	spread footing	12	36	1152	1782.08	14.925	53.536	15	1800	58	14	48
	28	16-E	caisson #53	4	306	376.991	1316.164		306	8.25	1399.22	310		

LATERAL LOADS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

SEISMIC DESIGN LOADS

Floor	w _x (k)	h _x (ft)	h _x ^k (ft)	w _x h _x ^k	C _{vx}	Story Force F _x (k)	Story Shear V _x (k)	Moment at Floor (ft-k)
Penthouse	6481.1	92.5	1115.41	7229044	0.179	293.33	0	27133.348
Roof	18245.1	74.5	797.56	14551503	0.361	590.46	293.33	43989.083
5	14162.0	60	570.24	8075727	0.200	327.69	883.79	19661.364
4	13922.9	46	377.75	5259370	0.130	213.41	1211.48	9816.8534
3	16960.3	32	215.24	3650482	0.091	148.13	1424.89	4740.0283
2	17785.3	18	88.23	1569200	0.039	63.67	1573.02	1146.1239
1	19178.2						1636.69	
Sum	106734.9	92.5	3164.42	40335326	1.000	1636.69	1636.69	106486.8

The seismic load for the redesigned concrete building is considerably larger than for the as-built steel building, which is to be expected since the new building is more massive.

Floor	w _x (k)	h _x (ft)	h _x (ft)	w _x h _x ^k	C_{vx}	Story Force F _x (k)	Story Shear V _x (k)	Moment at Floor (ft-k)
Penthouse	4213	92.5	1678.33	7070795	0.347	136.16	0	12594.449
Roof	4240.5	74.5	1176.85	4990465	0.245	96.10	136.16	7159.2331
5	4713.6	60	825.15	3889471	0.191	74.90	232.25	4493.7722
4	4726.5	46	533.66	2522321	0.124	48.57	307.15	2234.2278
3	4724.0	32	294.28	1390147	0.068	26.77	355.72	856.60376
2	4653.4	18	114.53	532940	0.026	10.26	382.49	184.72265
1	5444.4						392.75	
Sum	28502.4	74.5	2944.46	20396140	1.000	392.75	392.75	14928.56

LATERAL LOADS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

WIND LOAD FOR THE REDESIGNED CONCRETE BUILDING

	Wind Design									
Level	Load	(kips)	Shear	(kips)	Moment (ft-k)					
	N-S	E-W	N-S	E-W	N-S	E-W				
Pent	193.4	38.8	0	0	3481.3	698.2				
Roof	151.5	30.2	193.4	38.8	2196.7	437.6				
5	144.8	29.3	344.9	69.0	2026.7	410.7				
4	138.0	28.1	489.7	98.3	1932.5	393.8				
3	132.6	27.4	627.7	126.4	1856.3	384.1				
2	140.2	31.0	760.3	153.9	2523.7	557.2				
Total	900.5	184.8	900.5	184.8	10535.9	2183.4				

WIND LOAD FOR THE AS-BUILT STEEL BUILDING

	Wind Design								
Level	Load	(kips)	Shear	(kips)	Moment (ft-k)				
	N-S	E-W	N-S	E-W	N-S	E-W			
Pent	196.5	39.6	0	0	3536.7	712.1			
Roof	152.9	30.5	196.5	39.6	2217.2	442.4			
5	146.0	29.7	349.4	70.1	2044.3	415.2			
4	139.1	28.4	495.4	99.7	1948.0	397.7			
3	133.5	27.7	634.6	128.1	1869.4	387.5			
2	2 140.9		768.1	155.8	2536.6	562.0			
Total	909.0	187.0	909.0	187.0	14152.2	2916.9			

SCHEDULE COMPARISON

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

TURNER CONSTRUCTION COMPANY

- ■Design- Bid-Build
- ■Started foundations March 3rd, 2008
- ■Finished construction October 17th, 2008

SCHEDULE COMPARISON

REDESIGNED BUILDING SCHEDULE

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

- ■Start foundations on March 3rd, 2008
- ■Finish structure on December 9th, 2008
- ■Lead time for steel is insignificant -steel will be on site when foundations are finished

- Time difference because of sequencing, could potentially be sequenced differently if more crews were on site
- Turner pushed ahead with the schedule finishing before their estimated date effectively

SCHEDULE COMPARISON

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

- Time difference because of sequencing, could potentially be sequenced differently if more crews were on site
- Turner pushed ahead with the schedule finishing before their estimated date effectively

COST ANALYSIS STUDY

REDESIGNED BUILDING ESTIMATE

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Detailed Cost Analysis of the Structure-No Green Roof													
Level	Description	Amount	Material Price	Material Cost	Labor Price	Labor Cost	Equipment Price	Equipment Cost	Total Cost				
	Foundation	58 Ton	\$935.00	\$54,230	\$430.00	\$24,940	\$30.35	\$1,760	\$80,930				
Deinfersent	Columns	156Ton	\$935.00	\$147,263	\$430.00	\$430.00	\$30.35	\$4,780	\$152,473				
Reinforcement	Beam/Slabs	504 Ton	\$935.00	\$470,642	\$430.00	\$216,445	\$30.35	\$15,277	\$702,363				
	SUB-TOTAL	719	\$935.00	\$672,134	\$430.00	\$241,815	\$30.35	\$21,817	\$935,766				
	Foundations	6100 CY	\$109.00	\$664,900	\$14.90	\$90,890	\$5.55	\$33,855	\$789,645				
O (' - D)	Columns	1443 CY	\$109.00	\$157,189	\$34.00	\$49,031	\$16.95	\$24,444	\$230,664				
Cast in Place	Slabs	14192 CY	\$109.00	\$1,546,928	\$18.20	\$258,294	\$9.15	\$129,857	\$1,935,079				
Concrete	Beams	6477 CY	\$109.00	\$706,026	\$26.50	\$171,648	\$1,320.00	\$8,550,036	\$9,427,710				
	SUB-TOTAL	28211	\$109.00	\$3,075,043	\$20.20	\$569,864	\$1,352	\$8,738,191	\$12,383,098				
Location Factor:	Total Structure Estimate: \$13		\$13,17	73,000		Total L	abor Cost:	\$812,0	000				
98.9%	Total Materia	al Cost:	\$3,748,000			Total Equ	ipment Cost:	\$8,761,	000				

TURNER CONSTRUCTION COMPANY

Turner Construction Con	npany Budgets
Deep foundations (caissons)	\$215,000
Concrete (Spread ftgs, slabs)	\$5,199,000
Structural Steel	\$7,892,000
Total Structure	\$13,306,000
Whole Building	\$55,878,000

- \$30.60/SF vs. \$30.90/SF
- R.S. Means is not as accurate as real estimates
- ■Turner had contractors actually bid

Background Information

THE WESTINGHOUSE ELECTRIC COMPANY CORPORATE HEADQUARTERS

Existing Conditions

Functions and benefits

Project Goals

Patio

Design Process

Meeting area

Design Implications

Lunch area

Lateral Loads

Storm water collector

Schedule Comparison

Reduces heat island effect.

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

www.deg.state.mi.us/documents/deg-ess-p2-p2week-greenroofresources.doc

Background Information

THE WESTINGHOUSE ELECTRIC COMPANY CORPORATE HEADQUARTERS

Existing Conditions

Functions and benefits

Project Goals

Patio

Design Process

Meeting area

Design Implications

Lunch area

Lateral Loads

Storm water collector

■Reduces heat island effect

Green Roof

www.deg.state.mi.us/documents/deg-ess-p2-p2week-greenroofresources.doc

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Background Information

■No green roof structure costs \$13,173,000 or \$30.60/SF

Existing Conditions

With green roof, structure costs \$1,159,000 or \$2.68/SF more

Project Goals

Beam and columns needed to be resized, the slab was checked and found to be adequate

■ Green roof adds 100 PSF dead and 100 PSF live load to the accessible portion

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Detailed Cost Analysis of the Structure												
Level	Description	Amount	Material Price	Material Cost	Labor Price	Labor Cost	Equipment Price	Equipment Cost	Total Cost			
	Foundation	58 Ton	\$935.00	\$54,230	\$430.00	\$24,940	\$30.35	\$1,760	\$80,930			
Deinforcement	Columns	175 Ton	\$935.00	\$163,625	\$430.00	\$430.00	\$30.35	\$5,311	\$169,366			
Reinforcement	Beam/Slabs	572 Ton	\$935.00	\$534,820	\$430.00	\$245,960	\$30.35	\$17,360	\$798,140			
	SUB-TOTAL	805	\$935.00	\$752,675	\$430.00	\$346,150.00	\$30.35	\$24,432	\$1,123,257			
	Foundations	6100 CY	\$109.00	\$664,900	\$14.90	\$90,890	\$5.55	\$33,855	\$789,645			
Ossil's Disse	Columns	1518 CY	\$109.00	\$165,462	\$34.00	\$51,612	\$16.95	\$25,730	\$242,804			
Cast in Place	Slabs	14192 CY	\$109.00	\$1,546,928	\$18.20	\$258,294	\$9.15	\$129,857	\$1,935,079			
Concrete	Beams	7197 CY	\$109.00	\$784,473	\$26.50	\$190,721	\$1,320.00	\$9,500,040	\$10,475,234			
	SUB-TOTAL	29007	\$109.00	\$3,161,763	\$23.40	\$271,330	\$1,352	\$9,689,482	\$13,122,575			
Location Factor:	Total Structure Estimate: \$14,		\$14,33	32,000		Total L	abor Cost:	\$863,0	00			
98.9%	Total Materi	al Cost:	\$3,91	\$3,915,000		Total Equ	ıipment Cost:	\$9,714,	000			

Sustainable Architecture

Recommendations

■An additional week is needed to erect the green roof building than without it

Acknowledgements

RECOMMENDATIONS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Recommendations

- ■The building was successfully redesigned and the code was correctly implemented
- It is possible to have a reinforced concrete building
- Based on cost and schedule, this system is not recommended
 - **\$30.90/SF vs. \$30.60/SF**
 - March-October vs. March-December
- ■The addition of a green roof however, is recommended.
 - If the building were in concrete the green roof structural cost would be \$2.68/SF of building or \$20.24/SF of green roof
 - One additional week construction for the additional structure

ACKNOWLEDGEMENTS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

I would like to thank:

- ■Turner Construction Company
 - ■Bob Hennessey
- LLI Engineering
- Westinghouse Electric Company
- Wells Real Estate Funds
- ■Penn State University
 - ■Dr. Hanagan
 - Prof. Parfitt
 - ■Prof Holland
 - And the rest of the AE faculty and staff
- Family and friends

QUESTIONS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

QUESTIONS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

THIRD FLOOR EAST

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

THIRD FLOOR CENTER

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

ROOF EAST

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

EXISTING CONDITIONS

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Whole Building Steel

East Building Steel

West Building Steel

Pictures taken by Jessica L. Laurito on 8/19/2008

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

HAND CALCULATED BEAM

Preliminary Beam Design

Based on this preliminary design and interior gravity beam can be 24"x34"

2005 1005 NO STILL REQUIRED 1502 2005

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

PCA COLUMN CHECK

Column D-7.9 Fourth Floor

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Wind Frame 19

		06_4_X+Y_CW		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
Roof	24.27	24.27	17.43	17.43
Fifth	29.05	4.78	20.97	3.54
Fourth	43.42	14.37	31.90	10.93
Third	51.17	7.75	38.22	6.32
Second	46.66	-4.51	33.40	-4.82
First	-9.04	-55.70	-11.12	-44.52

TORSION

Wind Frame 22

Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
Penthouse	3.26	3.26	3.47	3.47
Roof	3.71	0.45	7.56	4.10
Fifth	9.77	6.06	15.69	8.12
Fourth	12.68	2.91	20.61	4.92
Third	18.67	5.99	27.52	6.92
Second	19.37	0.70	35.57	8.05
First	-3.24	-22.62	-10.30	-45.87

Seismic Frame 19

Load Case: E1	Seismi EQ_IBC	6_X_+E_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
Roof	50.00	50.00	15.85	15.85
Fifth	49.63	-0.37	14.53	-1.33
Fourth	64.72	15.09	19.06	4.54
Third	66.40	1.68	20.10	1.04
Second	73.12	6.72	15.00	-5.10
First	_23 10	-96.31	7.26	-7.74

Seismic Frame 22

Load Case: E1	Load Case: E1 Seismic EO IBC06_X_+E_F								
Level	Shear-X	Change-X	Shear-Y	Change-Y					
	kips	kips	kips	kips					
Penthouse	20.03	20.03	6.15	6.15					
Roof	26.35	6.32	-6.05	-12.20					
Fifth	47.99	21.64	-4.00	2.05					
Fourth	56.10	8.12	-5.38	-1.38					
Third	65.66	9.56	-5.03	0.35					
Second	60.39	-5.28	-4.42	0.61					
First	-17.19	-77.57	6.33	10.75					

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

DRIFT FOR REDESIGNED BUILDING

	Controlling Seismic							
Story	St heig	Story	Story height (ft)	Acutal Drift Ratio	Allowable $\delta_{xe}/h_{sx}=$		ble Total Drift (in) _{\textstyle{Wind}} =H/400	
Pent		Pent	92.5	0.0004	<	0.006667	75 Acceptable	
Roof		Roof	74.5	0.0005	<	0.006667	35 Acceptable	
5		5	60.0	0.0008	<	0.006667	Acceptable	
4		4	46.0	0.0009	<	0.006667	B Acceptable	
3		3	32.0	0.001	<	0.006667	6 Acceptable	
2		2	18.0	0.0009	<	0.006667	4 Acceptable	

DRIFT FOR THE AS-BUILT STEEL BUILDING

	Controlling Wind								
ſ	Ctory	Story	Story Drift	Story Drift Allowable Story Drift (in)		Allowable Story Drift (in)		Aliev	vable Total Drift (in)
	Story	height (ft)	(in)		Δ_{Wind} = H/400		(in)		Δ_{Wind} =H/400
	Roof	74.5	0.127	<	0.435	Acceptable	1.02425	< 2	.235 Acceptable
	5	60.0	0.187	<	0.42	Acceptable	0.89767	< 1	.8 Acceptable
	4	46.0	0.247	<	0.42	Acceptable	0.71044	< 1	.38 Acceptable
I	3	32.0	0.257	<	0.42	Acceptable	0.46336	< 0	96 Acceptable
	2	18.0	0.207	<	0.54	Acceptable	0.20662	< 0	.54 Acceptable

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

SEISMIC CALCULATIONS

Redesigned Values

Seismic Design Values, ASCE 7-05						
Response Modification Coefficient	R= 3	Table 12.2-1				
Coefficient	C _U = 1.7	Table 12.8-1				
Fundamental Period	T= 1.5999	Sec. 12.8.2				
Seismic Response Coefficient	C _S = 0.015	Eq. 12.8-3				
Building Height (above grade)	h= 92.5					

As-Built Values

	Seismic Design Values, ASCE 7-05		
Response Modification Coefficient	R= 3	R= 3.5	Table 12.2-1
Coefficient	C _U = 1.7	$C_{U} = 1.7$	Table 12.8-1
Fundamental Period	T= 1.780	T= 1.780	Sec. 12.8.2
Seismic Response Coefficient	C _S = 0.014	$C_S = 0.012$	Eq. 12.8-3
Building Height (above grade)	h= 92.5	h= 92.5	

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

SEISMIC CALCULATIONS

Seismic Design Values, ASCE 7-05						
Occupancy	II	Table 1-1				
Importance Factor	I= 1	Table 11.5-1				
Site Class	D	Table 20.3-1				
Spectral Response Acceleration, short	S _S = 0.12	Figure 22-1				
Spectral Response Acceleration, 1 sec	$S_1 = 0.046$	Figure 22-2				
Site Coefficient F _a	F _a = 1.6	Table 11.4-1				
Site Coefficient F _V	F _V = 2.4	Table 11.4-2				
MCE Spectral Response Acceleration, short	S _{MS} = 0.192	Eq. 11.4-1				
MCE Spectral Response Acceleration, 1 sec	S _{M1} = 0.1104	Eq. 11.4-2				
Design Spectral Acceleration, short	S _{DS} = 0.128	Eq. 11.4-3				
Design Spectral Acceleration, 1 sec	$S_{D1} = 0.0736$	Eq. 11.4-4				
Seismic Design Category	В	Table 11.6-1				

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

SEISMIC CALCULATIONS

(USGS Website Values	
S _S = 0.12	(From Figure 22-1)	S _S = 0.125
$S_1 = 0.046$	(From Figure 22-2)	S ₁ = 0.048
$S_{MS} = F_a * S_S =$	0.192	S _{MS} = 0.2
$S_{M1} = F_V^* S_1 =$	0.1104	S _{M1} = 0.116
$S_{DS} = 2S_{MS}/3 =$	0.128 A (Table 11.6-1)	S _{DS} = 0.133
$S_{D1} = 2S_{M1}/3 =$	0.0736 B (Table 11.6-2)	S _{D1} = 0.077

F _a Values (Table 11.4-1 ASCE 7-05)							
	S _S ≤0.25	S _S =0.5	S _S =0.75	S _S =1.0	S _S ≥1.25		
D	1.6	1.4	1.2	1.2	1		

F _v Values (Table 11.4-2 ASCE 7-05)							
$S_1 \le 0.1$ $S_1 = 0.3$ $S_1 = 0.3$ $S_1 = 0.4$ $S_1 \ge 0.4$							
D	2.4	2	1.8	1.6	1.5		

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

SEISMIC CALCULATIONS

Redesigned Values

$$C_T = 0.016$$
 (From Table 12.8-2)
 $X = 0.9$ (From Table 12.8-2)

$$T_a$$
= $C_t h_n^x$ = 0.9411255
 T_s = S_{D1}/S_{DS} = 0.575
0.8 T_s = 0.46 < T_a therefore must use Table 11.6-1,2

$$S_{DS}/(R/I) = 0.0427 \quad (12.8-2)$$

$$C_S = MAX \qquad S_{D1}/(T^*R/I) = 0.0153 \quad (12.8-3)$$
for T>T_L

$$S_{D1}T_L/(T^2R/I) = 0.3324 \quad (12.8-4)$$

$$\geq 0.01 \quad (12.8-5)$$

$$C_S$$
= 0.0153
 $T = C_U^*T_a = 1.5999134$
 $V = C_S^*W$ 1636.69

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

WIND CALCULATIONS

Basic Wind Speed (V) mph	90
Exposure Category	В
Importance Factor (I)	1
Wind Directionality Factor (Kd)	0.85
Topographic Factor (Kzt)	1

From Table 6-3

H (ft)	K _z	q _z
92.5	0.9675	14.354
74.5	0.908	13.471
60	0.85	12.611
46	0.79	11.720
32	0.712	10.563
18	0.59	8.902
0	0.57	8.456

From RAM

H (ft)	K _z	q _z
92.5	0.966	14.331
74.5	0.909	13.486
60	0.854	12.670
46	0.792	11.750
32	0.714	10.593
18	0.605	8.976
0	0.575	8.531

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

ſ	Пост	Tatal			Wind Pressures (psf)						
	Floor Heights	Level	Total Height	K_Z	q_Z	N-S	N-S	N-S	E-W	E-W	E-W
	rieignis	rioignt			Windward	Leeward	Side Wall	Windward	Leeward	Sidewall	
	18	Penthouse	92.5	0.9675	14.354	11.54	-8.21	-10.43	12.20	-4.91	-10.49
	14.5	Roof	74.5	0.908	13.471	10.99	-8.21	-10.43	11.61	-4.91	-10.49
	14	5	60	0.85	12.611	10.46	-8.21	-10.43	11.43	-4.91	-10.49
	14	4	46	0.79	11.720	9.91	-8.21	-10.43	11.04	-4.91	-10.49
	14	3	32	0.712	10.563	9.20	-8.21	-10.43	10.65	-4.91	-10.49
	18	2	18	0.59	8.902	7.90	-8.21	-10.43	10.45	-4.91	-10.49

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

WIND CALCULATIONS

	Wind Design								
Level	Load (kips)		Shear	(kips)	Moment (ft-k)				
	N-S	E-W	N-S	E-W	N-S	E-W			
Pent	193.4	38.8	0	0	3481.3	698.2			
Roof	151.5	30.2	193.4	38.8	2196.7	437.6			
5	144.8	29.3	344.9	69.0	2026.7	410.7			
4	138.0	28.1	489.7	98.3	1932.5	393.8			
3	132.6	27.4	627.7	126.4	1856.3	384.1			
2	140.2	31.0	760.3	153.9	2523.7	557.2			
Total	900.5	184.8	900.5	184.8	10535.9	2183.4			

	Wind Design							
Level	Load (kips)		Shear	(kips)	Moment (ft-k)			
	N-S	E-W	N-S	E-W	N-S	E-W		
Roof	151.6	30.5	0	0	2198.6	442.4		
5	144.8	29.7	151.6	30.5	2026.7	415.2		
4	137.9	28.4	296.4	60.2	1930.7	397.7		
3	132.3	27.7	434.3	88.6	1852.1	387.5		
2	139.5	31.2	566.6	116.3	2511.1	562.0		
Total	706.1	147.5	706.1	147.5	10519.2	2204.8		

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

WIND CALCULATIONS

Basic Wind Speed (V) mph

Wind Directionality Factor (Kd)

therefore Rigid structure

Exposure Category

Importance Factor (I)

Topographic Factor (Kzt)

$$q_p = 0.00256 K_h K_{zt} K_d V^2 I = 14.836$$

$$Pp = q_0GCpn = 22.254 -14.836$$

$$n_1 = 43.5$$
 1.163 eq (C6-15) $n_1 > 1$

$$g_Q = g_V = 3.4$$

$$z_{min} = 30'$$

$$I_z = c(33/z)^{1/6} = 0.275$$

$$L_z = I(z/33)^{\epsilon} = 380.55$$

$$Q_{N-S} = \sqrt{(1/(1+0.63(B+h/L_z)^{0.63}))} = 0.731$$

$$Q_{E-W} = \sqrt{(1/(1+0.63(B+h/L_z)^{0.63}))} = 0.832$$

$$G_{fN-S} = 0.925 [(1+1.7I_z g_Q Q)/(1+1.7g_v I_z)] = 0.7722744$$

$$G_{fE-W} = 0.925 [(1+1.7I_z g_Q Q)/(1+1.7g_v I_z)] = 0.8296736$$

90

0.85

Uncored Caisson

Background Information

FOUNDATION IMPLICATIONS

Caissons

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

Axial capacity = area x allow bearing - weight of caisson Uplift capacity NON-EMBEDDED CAISSON = Soli Friction + Weight of Caisson

0	ft Embedm	CAISSON					
Pile D	Area Circumf. Weight Tu			Tu	Uplift	Axial	
[ft]	[sf]	[ft]	[kips]	[kips]	Capacity	Capacity	
				w/ SF	w/o Core	w/o Core	
					[kips]	[kips]	
<u>5.00</u>	19.63	15.71	35.83	12.04	47.87	553.21	
<u>5.50</u>	23.76	17.28	43.36	13.24	56.60	669.39	
<u>6.00</u>	28.27	18.85	51.60	14.44	66.04	796.63	
<u>6.50</u>	33.18	20.42	60.56	15.65	76.21	934.93	
<u>7.00</u>	38.48	21.99	70.23	16.85	87.08	1084.30	
<u>7.50</u>	44.18	23.56	80.63	18.05	98.68	1244.73	
Length = 12.17 ft							

Background Information

Existing Conditions

Project Goals

Design Process

Design Implications

Lateral Loads

Schedule Comparison

Cost Analysis

Sustainable Architecture

Recommendations

Acknowledgements

Questions

FOUNDATION IMPLICATIONS

Spread footings

soil bearing 8 ksf caisson bearing 30 ksf

$$q_u = P_u/A$$

$$d^2(4VC+q)+d(2VC+q)w=q(BL-w)$$

Punching Shear

$$\begin{aligned} V_{\text{C}} &\leq \phi(2+4\beta_{\text{C}}) \sqrt{(\text{fc})b_{\text{O}}d} \\ & \phi 4 \sqrt{(\text{fc})b_{\text{O}}d} \\ & \phi(\alpha_{\text{s}}d/b_{\text{o}}+2) \sqrt{(\text{fc})b_{\text{o}}d} \end{aligned}$$

$$\beta_{\rm C}$$
= 1

$$\alpha$$
= 40 int and another 30 edge

20 corner